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The use of fast Fourier techniques for the direct solution of an important class of 
elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is 
described. Extensions to higher-order and higher-dimension equations as well as to 
integrodifferential equations are presented, and several numerical examples with their 
resulting precision and timing are reported. 

1. INTRODUCTION 

The numerical solution of partial differential equations arising from physics 
is one of the most important tasks for high-speed digital computers. At present, 
most existing codes are restricted to particular differential equations, and there 
is none which applies to a broad range of problems. Recently, the fast Fourier 
transform (FFT), which has been known for a few years, was successfully applied 
to the direct solution of the Laplace operator in two and three dimensions [l-4]. 
The object of the present report is the extension of FFT techniques to the solution 
of a broad class of linear second-order partial differential equations, including 
evolutive equations such as the vibrating string equation and the diffusion equation. 
Because of their importance in mathematical physics, we will consider the subclass 
of linear second-order two-dimensional partial differential equations (LSOTDPDE) 
of the form 

awx, Y) 
2x2 

+ a(y) awx, 9 

aY2 

+ bty) a4k Y) 
_ + C(Y) dcc Y) = #4x, Y>. 

ay 
(1) 

This subclass includes the following equations in physics: 

(i) elliptic equations such as Laplace and Poisson equations 

in planar geometry 
ayb ay 

0 1972 by Academic Press, Inc. 

(2) 
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in cylindrical geometry 

in (r, 4, 

a++ a24 a+ 
p + r2 p + r x = r2p@, 5) in (r, 0) 

with Dirichlet, Neumann, or periodic boundary conditions on a closed contour; 

(ii) parabolic equations such as the heat conduction or diffusion equation 

- = a2 3 + b(x t) a2+ 
a.3 at 3 

with Cauchy conditions; 

(iii) hyperbolic equations such as the vibrating-string equation 

!xE&() 
ax2 

with Cauchy conditions; 

(iv) Helmholtz-type equations 

(6) 

(7) 

with k known and the usual boundary conditions. 

In the remainder of this paper the various Fourier transforms associated with 
the corresponding boundary conditions for the x direction will be covered without 
great detail, assuming that the reader is familar with Hackney’s paper [l]. Along 
the second direction, which can be either spatial or temporal, the associated method 
of solution will be derived. Finally, generalizations to higher-dimension, higher- 
order equations, integrodifferential equations as well as equations containing a 
first-derivative term with respect to x will be outlined. 

2. FINITE DIFFERENCE FORMULATION 

The number of mesh points along the x direction will be either M - 1, M, or 
M + 1 depending on the type of boundary conditions for that direction. In the 
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following it is assumed that M is restricted to discrete values of the form A4 =- 20, 
where Q is a positive integer, allowing the use of FFT techniques. 

The absence of a first-derivative term with respect to x in Eq. (1) leads to the 
following symmetric nine-point finite difference formula [5]: 

for all interior mesh points (Z, J) of Fig. 1. 

0 
012 I M-2 X 

FIG. 1. Finite difference mesh. The above illustration corresponds to the solution of an 
elliptic equation. The unknown function 4 has prescribed values at the solid-circular points al1 
around the boundary of the rectangular domain, while the values of the source term p are given 
for every interior point. The solution of Eq. (8) allows the evaluation of 4 for every interior point 
of the domain. 

In the case of a parabolic equation characterized by a(y) = 0, the above finite 
difference equation is replaced by a six-point formula, 

From now on, the consideration of coefficients elk(J) and plc(.Z), which depend 
explicitly on J for Eqs. (8) and (9) and which allow the solution of, for example, 
Eqs. (3) and (4), will be dropped without any loss of generality in the application 
of the method but with much benefit to the clarity (see the remark at the end 
of Section 4). 

When the ollc’s and /&‘s are independent of J, that is when Eq. (1) has constant 
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coefficients a, b, c, one can derive explicit expressions for Eqs. (8) and (9). Equation 
(8) leads to the following five-point stencil: 

where CL = OX/d Y and (*, *) stands for (I - 1, J), (Z, J), (I i 1, J), (Z, J - l), 
and (I, J + 1). 

For b # 0, stencil equation (10) is exact up to the third order in x and up to 
the second order in y in the neighborhood of a point. 

For b = 0, it is exact up to the third order in both directions. 
When a = 1, b = c = 0, and d Y = AX, stencil equation 

familiar finite difference form of Poisson’s equation 

1 

@ 

1 -4 1 d(*, *) = WV ~(1, J). 

1 

Equation (9), which corresponds to a = 0, leads to the 
stencil: 

1 -2 + 26aAX $- c(Ax)* 1 

QI(*, *I = 

1 -2 - 2baAX f c(Ax)* 1 

(10) reduces to the 

(11) 

following six-point 

@W*P(*, *I. (12) 

For b # 0, stencil equation (12) is exact up to the third order in x and up to 
the second order in y in the neighborhood of a point. 
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For b = 0, it is exact up to the third order in x and to any order in ~7. When 
b = -1, c = 0, and A Y = AX = 1, stencil equation (12) reduces to 

wi 4(*,*j= R p(*,*). (13) 

For the following derivation, it is convenient to simplify further the writing of 
stencil equations (10) and (12) by setting 

w, J) = w>2 pv, 4, 
SS = aa - (b/2) N AX, 

SC = 2(1 + aa2) - c&Y)*, 

SN = az2 + (b/2) 01 OX, 

SL = -2 - 2boI AX + c(&Q2, 

SU = -2 + 2bci AX + ~(0)~. 

Stencil equations (IO) and (12) take, respectively, the simple forms 

N*, *I = w, 4 

and 

(14) 

(15) 
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3. BOUNDARY CONDITIONS FOR THE x DIRECTION 
AND ASSOCIATED FOURIER TRANSFORMS 

For the three types of equations-that is: elliptic, parabolic, and hyperbolic 
equations-the x axis is always a spatial direction subject to boundary conditions 
at both ends. In this section we will consider four types of useful boundary con- 
ditions for the x direction. 

(a) The function C$ has given values at each end of the x-range. Explicitly, one 
has for row J of Fig. 1. 

m J> = h(J), 
$(M, J> = dJR(J). 

(17) 

When Z = 1 or Z = M - 1, the stencil equations (15) and (16) collect, so to 
speak, boundary conditions (17) and, since they are known quantities, one transfers 
them to the right-hand side of stencil equations (15) and (I 6) by redefining 

T(l, J) := w, J> - 4,(J), 
r(M - 1, J) := T(M - 1, J) - 4&T). 

(18) 

One can therefore assume that the end conditions are 4 = 0, and the appropriate 
Fourier transform is a sine analysis and synthesis. 

Letting U stand for either T or $, one has 

Analysis 

u,(J) = $ $: U(Z, J) sin (G) (1 < s < M - 1); (19) 

Synthesis 

U(Z, J) = y U,(J) sin (-$) 
S=l 

(b) The function C$ has g iven derivatives at each end of the x range. In this 
case, the finite difference mesh of Fig. 1 has to be extended by column Z = -1 
on the left-hand side and column Z = M + 1 on the right-hand side. For row J, 
using a central difference formula for the partial derivative with respect to X, one 
has 

#(I, J> - #(-I, J> = 2 dX&(J), 
c#J(M + 1, J) - +(M - 1, J) = 2dXDj4J). 

(21) 
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Again, for I = 0 and I = M, stencil equations (I 5) and (I 6) collect the boundary 
conditions (21) and, after redefining, 

l-(0, J) : = qo, J) + 2 Llx D,(J), 
Q&f, J) := r(M, J) - 2 &CD&l). (22) 

One can assume the end conditions to be ~~/&x = 0, and the appropriate 
Fourier transform is a cosine analysis and synthesis: 

Analysis 

U,(J) = ; E E(1, M) U(Z, J)cos (gq 
I=0 

Synthesis 

where 

U(I, J) = f q&s, M) U&)cos ($) (0 d 1 < M), (24) 
S=O 

if i=O or i=j 
E(i’ j) = If, otherwise. 

(c) The function is periodic along the x direction. In this case column I = M, 
which is identical to column Z = 0, can be suppressed, and one has the following 
Fourier transform: 

Analysis 

U,(J) = $ y F(S, M/2) U(1, J) cos (Jg) (0 < s < M/2), 
I=0 (25) 

Us(J) = $ Tg U(1, J) sin ( 2*[S -L”‘2)1 ’ ) ($ + 1 < S < A4 - 1); 

Synthesis 

U(1, J) = y F(S, M/2) U,(J) cos (Jg) 
s=o 

M-l 

+ c (0 < I < A4 - l), (26) 
S=(M/2)+1 

where 
l/1/2 if i=O or i=j 

otherwise. 
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(d) The function 4 has given values on the left end and derivatives on the right 
end of the x range. These mixed types of boundary conditions are very useful 
when one is confronted with a symmetric problem, in which case one studies the 
left half and sets a#ax = 0 for the right-end boundary condition. 

In this case, the finite difference mesh of Fig. 1 needs to be completed by column 
I = M + 1, and one has in finite difference form 

+(A4 + 1, J) - #4 - 1, J) = 2 dXD,(J). 
(27) 

Again, for 1 = 1 and I = M, stencil equations (15) and (16) collect the boundary 
conditions (27) and, after redefining, 

T(l, J) := W, J) - bL(J), 
qiv, J) : = qkz, J) - 2 AX D,(J). (28) 

One can assume that C$ = 0 on the left-hand side and &$/ax = 0 on the right- 
hand side of the x range and the appropriate Fourier transform is as follows: 

Analysis 

Us(J) = $2: U(21 - 1, J) sin ( “S(yi ‘) ), 

U,+,(J) = $ M5p’ U(21, J) sin (G) + 2 U(M, J) sin (+,) 
I=1 

CW 

Synthesis 

(S = 1, 3, 5 )...) M - 1); 

U(Z, J) = g U,,,(J) sin ( ““2j?&- 1) ) (Z = 1, 3, 5 )...) M - l), 
(30) 

MI2 

U(l, J) = zl U.&J) sin ( ““yi ‘) ) (Z = 2, 4, 6 ,..., M). 

4. REDUCTION OF THE TWO-DIMENSIONAL PROBLEM TO A SET OF 
ONE-DIMENSIONAL PROBLEMS ALONG THE SECOND DIMENSION 

USING THE ABOVE FOURIER TRANSFORMS 

The above four types of transforms are used to reduce the two-dimensional 
stencil equations (15) and (16) to one-dimensional ones. 
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We first illustrate the technique for boundary conditions 3(a), and then state 
the results corresponding to the other three boundary conditions. 

Let us start with stencil equation (J5), which we rewrite in more conventional 
form 

&I- 1, 4 - ~CqvZ, 4 + +(I + 1, J) + xq(Z, J - 1) + SN$qZ, J + 1) = qz, J). 
(31) 

Replacing U by 4 and T in system (20), we get 

(33) 

Replacing the above values of 4 and I’ into Eq. (31) and making use of the fol- 
lowing identity: 

sin ’ 7T(Z - 1) s 
t 

M j + sin ( rr(z L1)’ ) = 2 cos (+I sin (%I, (34) 

one gets after some rearranging 

z; jSS&(J - 1) + [2 cos ($-j - SC] q5s(J) + SN+,(J + l)[ sin ($1 

(35) 

which is equivalent to the following system: 

(1 < S -( M - I). (36) 

Using the same technique, stencil equation (16) reduces to 

[2 cos (S) + SL] $s(J - 1) + 12 cos (-g-) + sa] #s(J) 

For a given value of S, Eqs. (36) and (37) are finite difference “molecules” 
representative of a one-dimensional problem along the second dimension. 
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Equation (36) is a three-point recurrence formula involving rows J - 1, J, and 
J + 1, while Eq. (37) is a two-point recurrence formula involving rows J - 1 and J. 
Both one-dimensional problems can be solved using the appropriate boundary 
conditions: for J = 0 and J = N in the elliptic case and simply J = 0 in the 
parabolic and hyperbolic cases. 

Fortunately, boundary conditions of types 3(b) and 3(c) lead to the same 
equations (36) and (37), the only change being the ranges of S values, which are 
0 < S < M and 0 < S < M - 1, respectively. 

Boundary conditions of the mixed type 3(d) require a special treatment; in this 
case, Eq. (36) is replaced by 

SS+,,(J - 1) + 2 cos ( “(2;; ‘) ) ~-I(J) - SChdJ) + S&bs(J + 1) 

= rzs(J), 

S&6,,-,(J - 1) + 2 cos ( “(2;; ‘) ) 4&J) - SC4,,-,(J) + SN+,,-,(J + 1) 

= r,,-,(J) (S = 1, 2 )...) M/2). (38) 

With U standing for both rj and r, we define new functions according to 

&k(J) = %.s-l(J) + U,,(J), 
G&(J) = G-,(J) - U,,(J). (39) 

Finally, combining equations of system (38), we get 

SS&s,cJ - 1) + [2 Cm ( ““fi I) ) - SC] c+;*(J) + SN&(J + 1) = r,+,(J), 

SS&(J - 1) - [2 cos ( “(2&- ‘) ) + SC &i(J) + SN&.(J + 1) = r&(J) ] 

(S = 1, 2 )...) M/2). (40) 

Following the same path, stencil equation (16) would reduce to 

[ ( 

2 cos 742s - 1) 

2M ) + =] +:s(J - 1) + [2 COS ( “‘2;- “) + SU] c&(J) 

= r,+,(J - 1) + l-‘&(J), 

[ ( zcos 5-c= - 1) 
2M ) - =] Ks(J - 1) + [2 cos ( “‘2;i “) - su] &(J) 

= -(l-‘&J - 1) + F,-,(J)) (S = 1,2,..., M/2). (41) 
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Equations (40) and (41) are essentially of the same form as Eqs. (36) and (37), 
and can therefore be solved using the same technique. 

Remark. We can now see that the restriction placed on constant coefficients 
for Eq. (1) could be lifted without harm to the method; in the case of variable 
coefficients with respect to the y-coordinate or variable mesh size d Y, one would 
simply have coefficients depending on J for recurrence formulas (36), (37) and 
(40), (41), and the one-dimensional problems could still be solved with the 
appropriate boundary conditions. 

5. TYPES OF EQUATIONS AND ASSOCIATED METHODS OF SOLUTION 
ALONG THE SECOND DIMENSION 

The solution of Eqs. (36), (37) or (40), (41) depends essentially on the type of 
equation one has to solve. This section will therefore be divided into three parts 
covering the elliptic, parabolic, and hyperbolic cases, respectively. 

5. I. Elliptic Equations (a > 0) 

In this case, one has top and bottom boundary conditions for the vertical 
y direction of the form 

(42) 

or in finite difference form, 

where in the case of boundary conditions of type 3(a), I runs from 1 to M - 1. 
Now let us summarize the whole solution of an elliptic problem having the 

above type of boundary conditions for the x direction and boundary conditions 
(43) for the y direction. 

(i) Using Eqs. (18), one redefines r(l, J) and r(M - 1, J) for J running 
from 0 to N. 

(ii) Using FFT for system (19), one gets 

r,(J) = f Mf’ r(I, J) sin ($) (1 < s < A4 - l), (4) 
I=1 
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J running from 0 to N, and, 

451 

g1s = $ y gl(Z) sin (G) 
I=1 

(1 < S < M - 1). (45) 

g2s = $5’ g,(Z) sin ($$) 
I=1 

(iii) For each S-value (1 < S < M - l), one uses the classical Gauss 
elimination method to solve the three-point recurrence system of Eqs. (36), 

=&-(J - 1) + [2 cos (+) - SC] &(J) + SN$,(J + 1) = r,(J) 

(0 < J < N) (46) 

subject to boundary conditions 

w$s@) + BB[$S(l) - &-1NP~Y = a, > (47) 
w&(N) + kM4J.N + 1) - cbs(N - l)lPdY = as . 

Note. Figure 1 corresponds to given values of function 4 on the top and bottom 
of the mesh; that is, 01~ = 1, ,3, = 0, 01~ = 1, flT = 0. 

(iv) Again, using FFT for system (20), one finally gets the solution 

(48) 

J running from 0 to N. 
The Gauss elimination method used to solve system (46) subject to boundary 

conditions (47) is an error-reducing scheme and is therefore always stable. 

5.2. Parabolic Equations (a = 0) 

In this case the problem is of the evolutive type; the vertical axis being usually 
the time direction, there are only initial conditions at the bottom of the mesh of 
the form 

%4 + R9ww = g1(4 (4% 

or in finite-difference form 
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Again for boundary conditions of type 3(a) for the x direction, steps (i), (ii), 
(iv) above are essentially the same, but step (iii) is completely different. Instead of 
Eq. (36) one has the two-point recurrence formula (37) 

[2 cos (g) + q 4dJ - 1) + [2 cos ($g, + SD.] &(J) 

= Ts(J - 1) + r,(J) (1 ,( J < A’) (51) 

subject to the initial condition 

%fMJ + BB[bS(O) - d.s- 11114 y = gls . (52) 

For example, in the case of given values along the bottom boundary, one has 
01~ = 1 and /3, = 0. One then gets dS(0) = glS from Eq. (52) and, using a step-by- 
step method, one “marches” using Eq. (51) for J = 1, 2,..., N and computes 
successively r&(l), $,(2),..., 4,(N). 

In contrast with the implicit scheme used for the elliptic case, the above step-by- 
step method is numerically stable if 

lZcos(-$-) +SUi > 12cos(--$) +SLI forallS 

(1 < S < A4 - 1); (53) 

or, using Eqs. (14) and setting G(S) = 2 [l - cos(~S/M)], 

/ e2(S) + 2601 AX + c(&‘)~ / > / -c2(S) - 2ba AX + c(AX)~ 1 
for all S (1 < S < M - 1). (54) 

Rather than study condition (54) in detail, we can outline an interesting result 
for the case of the “well-posed” problem (corresponding to a physically positive 
diffusion) of the heat equation (5) for which b = -a2, c = 0. For this case Eq. (54) 
becomes 

E2(S) + 2&x AX > / -G(S) + 2&Y AX I (55) 

and we readily see that whatever the positive value of 01 is, inequality (55) is always 
satisfied, which means that there is no restriction placed on the value of 

u% Ax = a2[(dX)2/Ll Y], 

while for other methods one requires 

(lla2)V mw21 ( UP). (56) 

In addition to the unrestricted value d Y, the present method allows the use of 
a higher-precision six-point formula, while the other step-by-step methods are 
restricted to a lower-precision four-point “forward” stencil. 
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5.3. Hyperbolic Case (a < 0) 

We are again confronted with a problem of the evolutive type; the vertical axis 
is generally the time direction, the initial conditions being of the form 

and (57) 

or in finite-difference form 

#(A 0) = g2m 
dC4 1) - dK 0) = d yg2m. 

(58) 

Again, for boundary conditions of type 3(a) for the x-direction, step (iii) has 
to be treated somewhat differently. 

In this case, one uses the system of equations (36), 

~qw - 1) + [2 cos (%I - SC] &(J) + SN#,V + 1) = F,(J) 

(0 < J G N) (59) 
subject to the following initial conditions: 

(60) 

One first computes 4&O) and 1#~(1) using system (60); then using the three-point 
recurrence formula (59) for J = 1, 2,..., N - 1, one successively gets &(2), 
+s(3),..., c$~(N). For this case we must again perform a stability analysis. 

The corresponding amplification matrix is 

G= 
( 

SC - 2 cos(?rS/M) ss -- 
SN SN 

1 
for all S (1 < S < M - 1). (61) 

1 0 

Rather than perform a detailed stability analysis, let us consider the case of 
the vibrating-string equation (6) for which formula (61) becomes 

G= 2 [l -+s)] -1 

j 
(1 <s < M - l), 

1 0 

where G(S) = 1 - cos(?rS/M). 
The two eigenvalues are given by 

(62) 

A2 - 2[1 - (c2/012) E”(S)] x + 1 = 0 (1 < s < M - 1). (63) 
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If (?/a”) e2(S) ,< 2, both roots have absolute value I and, since E&,(S) N 2, we 
have the following stability condition: 

(~“/a”) < 1 or cyLl Y/Ax)2 < 1. (64) 

Again, the present method allows the use of a higher-precision nine-point formula, 
while the other step-by-step methods are restricted to a lower-precision five-point 
“forward” stencil. 

6. EXISTING PROGRAMS AND EXAMPLES 

A general program has been developed which solves Eq. (1) with constant coef- 
ficients on a rectangular mesh. The program is simply fed with the coefficients of 
the LSOTDPDE, the source term, and the appropriate boundary conditions. 
The variety of boundary conditions according to the type of equation is best 
summarized by the tableau of Fig. 2. 

Another more general program for which the coefficients of the LSOTDPDE 
are functions of the second dimension has been developed; it accomodates the 
same variety of boundary conditions as the first one, but accepts general stencil 
equations (8) or (9). 

We are now going to give three example pertaining to the three types of equations 
and their resulting timing. 

6.1. Elliptic Equation (a > 0) 

This example, which is taken from electrostatics, is concerned with the solution 
of Poisson’s equation in two-dimensional planar geometry 

(ay/ax2) + (ay/ap) = -p. (65) 

After normalization, one has the following boundary conditions and source term 
illustrated by Fig. 3a: 

d(-l,Y> = 1 and M,Y) = 0 for O<JJ,(l, 
(66) 

W<X> 0) = 0 ay and 4(x, 1) = Q(1 - 4 for -1 <x < 1. 

p is zero everywhere except at the origin where its value is normalized to 1. 
The condition 3$(x, O)/ay = 0 implies symmetry with respect to the x axis. 
Figure 3b displays the resulting potential map. The mesh has 64 divisions along x 

and 40 along y; the corresponding timing is 0.477 set on the CERN CDC 6600 
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computer with a relative precision [with respect to the adopted five-point stencil 
(15)] of 10-11. 

Partial differential equation: 

aw, Y) + a awx, Y) -+b 
a.9 w 

f-$$ + @#4x, Y) = Pk Y), 

where + is the unknown function while p is the known source term. 
The coefficients a, 6, and c as well as the cell ratio AX/d Y and the mesh size (M = 24 along 

X and N along ?) are given parameters. 

Boundary conditions for X: 

1) $(O, Y> = f,(Y), +@f, y) = h(Y) 

3) Periodic along x 

Boundwy conditians for Y (or t): 

1) Elfiptic case (a > 0) 

Y .’ adi 
aI.4 -I- Br - = &I 

ay 

2) Parabolic case (a = 0): 

t ,’ ’ t 

N- 

3) Hyperbolic case (a < 0) 

t ’ t4 

N 

FIGURE 2 
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FIGURE 3 
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x 

.\. n c f 
Fig. 4a 

. 

FIGURE 4 
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6.2. Parabolic Equation (a = 0) 

A typical problem associated with a parabolic equation may be illustrated by 
the following equation: 

(azT/aXy - (l/~“)(aT/at) = p, (67) 

where T can be interpreted as the temperature at time t of an element of a thin 
rod at a distance x from the center. 

In this case we choose l/a2 = 0.1 and /3 = 0 for the numerical solution, and 
after normalization, one has the following initial and boundary conditions 
illustrated by Fig. 4a: 

T(x, 0) = 0 for --1<x<-+ or OSx<l, 
T(x, 0) = 1 for -;<x<o, 

aT(-1, t) = o am, t> 
(68) 

ax and ____ = ax 
0 for t > 0. 

The last two equations (68) imply that the heat flow at each end of the rod is null; 
therefore, as t increases, the initial temperature plateau of constant height 1 and 
width & of the x range will diffuse in such a way that for large enough t the 
whole x range will be at the final temperature T = 2. 

Figure 4b displays the resulting evolutive phenomenon and one can see clearly 
that for large t the temperature T tends to one quarter of the initial height of the 
plateau. The mesh used has 64 divisions along x and 100 along y, the corresponding 
timing is 1.088 set on the CERN CDC 6600 computer with a relative precision 
[with respect to the adopted six-point stencil (16)] of 10~‘~. 

6.3. Hyperbolic Equation (a < 0) 

This example which is borrowed from Lanczos [6] is associated with the 
differential equation of the vibrating string: 

(a2v/ax2) - (a+qaty = 0, (69) 

where v is the displacement of the string at a given point x and a given time 1. 
After normalization, let us have the following initial and boundary conditions 

illustrated by Fig. 5a: 

v(x,O) = 1 + x for -1 <x<o, 
(70) 

v(-I, t) = 0 and __ am t) = o 
ax for t 3 0. 



Y 
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The initial condition means that the string is excited by “plucking” it at x _- 0, 
while the boundary conditions imply that the string is symmetric with respect to 
x = 0; so we have only considered the left half. 

Figure 5b displays the resulting evolutive phenomenon. The rather strange 
behavior of the string is as follows: the outer contour remains at rest while a straight 
line moves down with uniform speed, truncating the triangle to a quadrangle of 
diminishing height until the figure collapses. The same phenomenon repeats itself 
downward in reverse sequence until the reverse image of the triangle is restored, 
and then the center of the string moves back up again. The mesh used has 64 divi- 
sions along x and 200 along y, the corresponding timing is 9.012 set on the 
CERN CDC 6600 computer with a relative precision [with respect to the adopted 
five-point stencil (15)] of IO-ll. 

7. EXTENSIONS AND CONCLUDING REMARKS 

7.1. Extension of the Method to Higher-Order Equations 

Equation (1) can be solved successively, allowing for the solution of higher-order 
equations. For example, the following fourth-order equation: 

a*# $j + (al + a21 w + a a CY + (b, + b,) * 
l 2 ay4 ax2 ay 

w w a24 + (a,b, + b,a,) ay3 + (c, + c2) p + (w2 + b&2 + Ga ) 2 
ay 

+ @,c, + c,b,) ay + ClC24 = P (71) 

with boundary conditions 

3 824 a+ ax2 + a2 ay2 + b2 ay + CPA and 4 given on a rectangular contour (C), 

can be factorized and solved in two steps using an intermediate function # 
according to 

(i) $ + a, g + b, g + cl+ = p 
Y Y 

with $ given on (C) 
(72) 

(ii) $+a,$$+b,$+& = $ with r$ given on (C). 
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A well-known example of the above factorization is the biharmonic equation 
for which one has: a, = a2 = 1, b, = 6, = cl = c2 = 0, 

a4+ a+$ a+$ 
~+2~+~=P 

with 

and 4 = 0 on (C), 

in which case one takes the intermediate function # and successively solves 

aqb a2* 
=+w=p with # = 0 on (C), 

a24 ayb 
p+w=+ with I$ = 0 on (C), 

(73) 

(74) 

allowing for the use of a simpler stencil equation than the one required for the 
direct solution of Eq. (73). 

1.2. Extension of the Method to Higher-Dimension Equations 

The method can be extended to three- and four-dimensional problems as in the 
case of the relativity theory. 

For the three-dimensional case, the partial differential equation must be of the 
form 

824 324 ax2 + a(z) ay2 + b(z) 3 + c(z) $ + d(z) 4 = P, 

where z can either be a true dimension or the time, and with the appropriate 
boundary conditions. 

One now proceeds as follows: 

(i) Two Fourier transforms are performed, first along the x direction and 
then along the y direction. 

(ii) The resulting one-dimensional problems along the z direction are solved 
using either the classical Gauss elimination method or a step-by-step method. 

(iii) Reconstitution of the solution is done via two inverse Fourier transforms 
first along the y-direction and then along the x direction. 

The operation count shows that if M and N are the number of mesh points, 
of the form M = 2’2~~ N = 2 ON along the x and y directions, and K along the 
z direction, the required number of operations for the complete solution of Eq. (75) 
is proportional to MNK (log, M + log, N). 
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7.3. Extension of the Method to Integro Dl@erential Equations 

The only requirements for Eqs. (8) and (9) is that they must be symmetric in x-- 
which is why one does not consider the &#/ax term in Eq. (I)-and also that the 
corresponding computing molecule should be simple, i.e., expressible with at 
most three samplings in each direction. 

The above constraints are satisfied if we add to the left-hand side of Eq. (1) 
a fifth term of the form: 

J’I 9 dx 4, (76) 

where the domain of integration is restricted to distances LIX and d Yin the neigh- 
borhood of a point and for which the finite difference counterpart for AX = d Y 
is simply 

(AA’? - x 
9 4(*, *). (77) 

7.4. Inclusion of a First-Derivative Term with Respect to x 

If one adds to the left-hand side of Eq. (1) a fifth term of the form h(a#/ax), 
stencil equations (15) and (I 6) become, respectively, 

SN 

o---T l-8 --SC 
-0 

1+/J $(*. *) = r(f, -0 (78) 
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0 1-B su l+B 1 
oz'zz 8 

41*> *> = J-t*, *I, (79) 

l-8 SL I+8 1 

where /I = (h/2) dX and dX is chosen such that p < 1. 
In this case, the only - /?) and one has 

Analysis 

U,(J) = -$ y U(Z, J) a’ sin (+) (1 < S < M - 1); (80) 
I=1 

Synthesis 

U(Z, J) = cc-1 y U,(J) sin (+) (1 < z < M - 1). (81) 
S=l 

Also, system (18) is modified accordingly , 

q1,4 := m, J) - (1 - P) 4L(J), 
r(A4 - 1, J) := r(M - 1, J) - (1 + /3) &(J), 

(82) 

while in Eqs. (36), (37) cos(?~S/M) is multiplied by ~‘(1 - 8”). A similar result 
has been obtained somewhat differently by Sarmin [7]. 

7.5. Concluding Remarks 

The present fast Fourier transforms have been successfully used for the two- 
dimensional solution of both the Laplace and the Poisson equations. In cylindrical 
geometry with azimuthal symmetry, the above techniques were applied in plasma 
simulation [8], while the planar version of Poisson’s equation has been used in the 
simulation of high-intensity proton-beam accelerators [9]. The foregoing numerical 
studies made ample use of techniques described by Hackney [l] for the specification 
of either inside boundaries or free-space conditions. The general two-dimensional 
code for the solution of Eq. (1) should also find application in nuclear-reactor 
calculations [lo] where one has to solve several adjacent rectangular regions each 
with their own set of coefficients for the partial differential equation; in this case 
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the FFT techniques would be used in each subdomain, and the treatment of 
interfaces between the different material regions could be performed iteratively. 

Three-dimensional problems have also been solved. The first one, which arose 
with magnetic field evaluation for high-energy physics magnets [l I], solves the 
Laplace equation on a 64 x 64 x 10 mesh (that is, 40960 cells) in 8.4 set on the 
CERN CDC 6600 computer with a relative precision of 10-ll. The second one 
sprang from the study of magnetic field penetration into a two-dimensional iron 
block, and led to a three-dimensional parabolic equation (the time being thought 
of as a dimension) which, due to the evolutive character of the problem, was 
solved in “slices” of eight cells in the time direction for memory requirements. 
Altogether, a 64 x 64 x 80 mesh (roughly a third of a million cells) required 
80 set on the CERN CDC 6600 computer, and was checked against an analytical 
study [12] for very simple boundary conditions. A general three-dimensional 
computer code for the solution of Eq. (75) will be developed in the near future. 
However, the limited direct access memory of the largest present-day computers 
causes a bottleneck, and much is hoped in that direction from new machines such 
as the Illiac IV and Star 100 computers. 
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